Definitions: Trigonometric functions relate the angles of a right triangle to the ratios of its sides. The three primary ones are:

sin = sine (ES: seno, FR: sinus) cos = cosine (ES: coseno, FR: cosinus) tan = tangent (ES/FR: tangente) SOH-CAH-TOA → sin=opp/hyp • cos=adj/hyp • tan=opp/adj

Intent: Fast visual reference for sin, cos, tan: solver, unit circle cues, special angles, and key identities.

Enter 2 inputs (angle+side or two sides). We'll compute the rest.
b (adjacent) a (opposite) c (hypotenuse) θ φ
Formulas
SOH sinθ = a / c
CAH cosθ = b / c
TOA tanθ = a / b
Deg↔Rad:
- rad = deg·π/180
- deg = rad·180/π
Pythagoras: c² = a² + b²
Results
a =
b =
c =
sinθ =
cosθ =
tanθ =
θ ≈
φ ≈ (φ = 90° − θ)
Each position means : angle in radian / angle in degrees (ie: π/4 | 45°). COS and SIN coordinates as follow [cos,sin].
0 | 0° π/2 | 90° π/3 | 60° π/4 | 45° π/6 | 30° π | 180° 3π/2 | 270° cos sin 0.5 √2/2 √3/2 1 -1 0.5 √2/2 √3/2 1 -1 0 1 1/√3 tan
Unit circle values (exact):
deg
rad
sin
cos
tan

0
0
1
0
30°
π/6
1/2
√3/2
1/√3
45°
π/4
√2/2
√2/2
1
60°
π/3
√3/2
1/2
√3
90°
π/2
1
0
120°
2π/3
√3/2
−1/2
−√3
210°
7π/6
−1/2
−√3/2
1/√3
310°
31π/18
−√3/2
1/2
−√3
Not-so-basic
Formulas
Reciprocals:
csc(θ) = 1/sin(θ) = c/a — cosecant
sec(θ) = 1/cos(θ) = c/b — secant
cot(θ) = 1/tan(θ) = b/a — cotangent
Pythagorean: sin²(θ) + cos²(θ) = 1;
1 + tan²(θ) = sec²(θ); 1 + cot²(θ) = csc²(θ)
Cofunction: sin(90° − x) = cos(x); tan(90° − x) = cot(x)
Angle addition: sin(α ± β) = sin(α).cos(β) ± cos(α).sin(β);
cos(α ± β) = cos(α).cos(β) ∓ sin(α).sin(β);
tan(α ± β) = (tan(α) ± tan(β)) / (1 ∓ tan(α).tan(β))
Inverse trig (right triangle)
Formulas
θ = arcsin(a/c) = arccos(b/c) = arctan(a/b)